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a b s t r a c t

We extend [Shravan K. Veerapaneni, Denis Gueyffier, Denis Zorin, George Biros, A boundary
integral method for simulating the dynamics of inextensible vesicles suspended in a vis-
cous fluid in 2D, Journal of Computational Physics 228(7) (2009) 2334–2353] to the case
of three-dimensional axisymmetric vesicles of spherical or toroidal topology immersed
in viscous flows. Although the main components of the algorithm are similar in spirit to
the 2D case—spectral approximation in space, semi-implicit time-stepping scheme—the
main differences are that the bending and viscous force require new analysis, the lineari-
zation for the semi-implicit schemes must be rederived, a fully implicit scheme must be
used for the toroidal topology to eliminate a CFL-type restriction and a novel numerical
scheme for the evaluation of the 3D Stokes single layer potential on an axisymmetric sur-
face is necessary to speed up the calculations. By introducing these novel components, we
obtain a time-scheme that experimentally is unconditionally stable, has low cost per time
step, and is third-order accurate in time. We present numerical results to analyze the cost
and convergence rates of the scheme. To verify the solver, we compare it to a constrained
variational approach to compute equilibrium shapes that does not involve interactions
with a viscous fluid. To illustrate the applicability of method, we consider a few vesicle-
flow interaction problems: the sedimentation of a vesicle, interactions of one and three
vesicles with a background Poiseuille flow.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Vesicles are closed lipid membranes suspended in a viscous solution. They are common in biological systems and play an
important role in intracellular and intercellular transport; artificial vesicles are used in a variety of drug-delivery systems
and to study the properties of biomembranes. The vesicle evolution dynamics are characterized by a competition between
membrane elastic energy, nonlinearity, surface inextensibility and non-local interactions due to the hydrodynamic coupling.
The design of efficient computational methods for such flows has received limited attention compared to other types of par-
ticulate flows. In [25], we introduced an algorithm for vesicle simulations in two dimensions. In this paper, we take the first
step towards efficient high-order three-dimensional simulations by considering axisymmetric vesicle flows for the case
where there is no viscosity contrast across the vesicle membrane. The equations that govern the motion of a single vesicle
in three dimensions are
. All rights reserved.
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@x
@t
¼ v1 þ S½fb þ fr� ðvesicle position evolutionÞ;

divc
@x
@t
¼ 0 ðsurface inextensibilityÞ;

ð1Þ
where c is the vesicle membrane, divc is the surface divergence operator, x is a Lagrangian point on c; fr is a force (tension)
due to surface inextensibility, fb is a force due to bending, v1 is the far-field velocity of the bulk fluid and S is the single layer
Stokes operator, defined in Section 2. The first equation describes the motion of the vesicle boundary; the second equation
expresses the local inextensibility of c.

Our main goal is to extend the ideas presented in [25] to the axisymmetric case of vesicles with spherical or toroidal
topology. The extension is non-trivial because in three dimensions the bending energy has a much more complicated form
and cannot be reduced to a linear expression in arc-length derivatives as in the two-dimensional case. Furthermore, the qual-
itative numerical behavior of bending forces is also different: an unconditionally stable semi-implicit linearized scheme with
no CFL-type restriction on the time step, similar to the two-dimensional case, could only be found for the spherical topology.
For vesicles with toroidal topology (admittedly less common, but observed in nature [19]), eliminating CFL-type time-step
restrictions requires a fully implicit time-marching scheme. Our main contribution is the development of efficient numerical
schemes for (1) for spherical and toroidal topologies with the following components:

� They require a single linear solve per time step for spherical topology and a small number of nonlinear iterations for toroi-
dal topology;

� They include an efficient preconditioner to enforce the surface-incompressibility constraint;
� They are spectrally accurate in space and third-order accurate in time.

Another important part of the algorithm is a novel numerical scheme for evaluation of the 3D Stokes single layer potential
on an axisymmetric surface, needed to achieve an optimal complexity of the algorithm. For verification, we compare equi-
librium shapes obtained using the proposed method with shapes obtained using a variational approach that does not involve
computing viscous forces. Finally, to illustrate the capabilities of the method, we consider sedimentation of vesicles under
gravity and interactions of multiple vesicles with a background Poiseuille flow.

1.1. Limitations

In the current form, our scheme is not adaptive. Incorporating adaptivity in space and time requires suitable error esti-
mators. In addition, while p-type spatial adaptivity can be incorporated with less effort, more fundamental changes to the
current scheme are required for h-type adaptivity because a non-uniform discretization would require a different approach
to compute high-order derivatives accurately.

Our scheme has a mild time-step restriction in the case of shear flows: the stable time-step size is inversely proportional
to the shear rate. While one would hope that a fully implicit scheme would eliminate or reduce this restriction, our exper-
iments indicate that even a fully implicit Newton scheme (Section 4.3) does not yield noticeable speed-ups. This is because
the Newton iterations do not converge for large time-step sizes. The time-steps for which they do converge are very close to
the time-steps for which the semi-implicit scheme is stable.

An additional limitation of the overall scheme is that we do not consider topology changes or vesicles flows with a vis-
cosity contrast across the membrane, which would require solution of an additional boundary integral equation.

1.2. Related work

There has been a lot of work on modeling 3D axisymmetric particulate flows. In [25], we discussed vesicle-related algo-
rithms. An excellent review of such methods can be found in [16] (Table 1, p. 289; for vesicles see the ‘‘liquid capsules”
entry).

Several groups have focused on determining stationary shapes of three-dimensional vesicles using semi-analytic [20,3,5],
or numerical methods like the phase-field [8,7] and membrane finite element methods [9,13]. These approaches are based on
a constrained variational approach (i.e., minimizing the bending energy subject to area and volume constraints) and cannot
be used for interactions of multiple vesicles in shear flows.

A full three-dimensional simulation of a single vesicle incorporating the hydrodynamic coupling, local inextensibility and
the bending forces has been reported in [10,21]. A closely related work is also that of [17], in which, a nearly inextensible
interface was considered for the axisymmetric motion of red blood cells inside a cylindrical tube.

In all, however, there has been little work in developing fast algorithms for axisymmetric vesicle flows.
1.3. Contents

In Section 2, we formulate the integro-differential Eq. (1) that govern vesicle dynamics. The spatial and temporal discretiza-
tions are described in Sections 3 and 4, respectively. In Section 5, we present numerical results for a number of problems involv-



S.K. Veerapaneni et al. / Journal of Computational Physics 228 (2009) 7233–7249 7235
ing single and multiple vesicles suspended in a viscous fluid. We conduct numerical experiments to investigate the stability and
convergence order of different time-stepping schemes. The verification of the solver and several important details (semi-ana-
lytic solutions for the quiescent case, expressions for the force and Stokes convolutions in the axisymmetric case and an analysis
of the approximation error for high-order derivatives and ways to improve accuracy) are presented in the Appendix.

2. Problem formulation

For simplicity, we first discuss the formulation for a single vesicle suspended in an unbounded viscous fluid. Let pðxÞ and
vðxÞ denote the fluid pressure and velocity fields and let c denote the vesicle membrane. The motion of the background fluid
is described by the Stokes equations,
�lDv þrp ¼ 0 and divv ¼ 0 in R3 n c; ð2Þ
where l is the viscosity of the fluid. The no-slip boundary condition on c and the free-space boundary condition require that
v ¼ _x on c; lim
x!1

vðxÞ � v1ðxÞ ¼ 0; ð3Þ
where _x is the total derivative of the motion of material point on the vesicle surface (i.e., its velocity) and v1 is the far-field
velocity of the background fluid. The membrane forces of magnitude f are balanced by a traction jump across the interface c.
That is, if R denotes the stress tensor, then
½½Rn��c ¼ f; ð4Þ
where n is the normal to the interface. To derive an expression for f we have to consider the constitutive properties of the
vesicle membrane. The standard assumptions for vesicles [19] consider a surface elastic energy that consists of two terms:
EðH;rÞ ¼
Z

c

1
2
jBH2 þ rdc; ð5Þ
where jB is the bending modulus and H is the mean curvature. The first term is the bending energy and the second term is
required to enforce the local inextensibility constraint of the surface. In other words, the tension r is a Lagrange multiplier
that enforces the constraint. The interfacial force can be derived from the surface energy by taking its L2-gradient
f ¼ �DE
Dx

:

In order to derive a formula for f in terms of the curvature and the parameterization of the surface, we need to introduce a
few quantities. Let xðu;vÞ : U ! c be a parametrization of the surface. The corresponding fundamental form coefficients are
[12],
E ¼ xu � xu; F ¼ xu � xv ; G ¼ xv � xv ðfirst fundamental formÞ; ð6Þ
L ¼ xuu � n; M ¼ xuv � n; N ¼ xvv � n ðsecond fundamental formÞ: ð7Þ
The normal to the surface and the area element are defined by
n ¼ ðxu � xvÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EG� F2

p
; dA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EG� F2

p
dudv ¼W dudv : ð8Þ
We can now define the mean and Gaussian curvatures as
H ¼ 1
2

EN � 2FM þ GL

W2 ; K ¼ LN �M2

W2 : ð9Þ
Then, following [26], the gradient or first variation of (5) is given by
DE ¼
Z

c
ðDSH þ 2HðH2 � KÞÞn � Dx� ðrDSxþrSrÞ � Dxdc; ð10Þ
where DS is the Laplace-Beltrami operator defined by
DS/ ¼
1
W

E/v � F/u

W

� �
v
þ G/u � F/v

W

� �
u

� �
; for some scalar function /: ð11Þ
From (10), we define the bending and tension forces as
fb ¼ �ðDSH þ 2HðH2 � KÞÞn; fr ¼ rDSxþrSr: ð12Þ
These two forces constitute the interfacial force, that is, f ¼ fb þ fr. Using classical potential theory [15], the solution of
(2)–(4), combined with the local inextensibility constraint of the membrane can be written as
_x ¼ v1ðxÞ þ S½fb þ fr�ðxÞ and divcðS½fr�Þ ¼ � divcðv1 þ S½fb�Þ: ð13Þ
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This is a system of two integro-differential equations for two unknowns: the position of the membrane x and the tension r.
The single layer potential operator is defined by S½f�ðxÞ ¼

R
c Gðx; yÞfðyÞdcðyÞ, where G is the free-space Green’s function for

the Stokes operator and is given by
Gðx; yÞ ¼ 1
8pl

1
jrj Iþ

r� r

jrj3

 !
; r ¼ x� y: ð14Þ
Next, we present the reduction of these equations to one spatial variable in the axisymmetric case.

2.1. Axisymmetric formulation

Assuming symmetry in the ‘v’ direction, the positions and the interfacial forces take the following form
x ¼
x1ðuÞ cos v
x1ðuÞ sin v

x2ðuÞ

264
375; f ¼

f1ðuÞ cos v
f1ðuÞ sin v

f2ðuÞ

264
375: ð15Þ
The parametric domain fu;vg 2 U is ½0;2p� � ½0;2p� for toroidal topologies; representing all variables in the
trigonometric basis guarantees that the resulting functions, are well-defined on the toroidal domain
½ðRþ cos uÞ cos v ; ðRþ cos uÞ sin v; sin u�, with R ¼

ffiffiffi
2
p

. A sphere can be regarded as a degenerate torus with R ¼ 0, with each
point of the sphere corresponding to two points on the torus. To make this mapping one-to-one we consider only one half of
the parametric domain ½0;p� � ½0;2p�. For x to be a smooth function on the sphere, it is necessary and sufficient that x1 is an
odd and x2 is an even periodic function of u; in other words, a trigonometric series for x1 and x2 have only nonzero coeffi-
cients for sines and cosines, respectively. Similarly, any scalar function defined on the surface needs to be even in u.

We can now write the bending and tension forces in terms of u. Let s be the arc-length parameter, that is,
sðuÞ ¼

R u
0 jjxðu0Þjjdu0. In the Appendix B, we derive the expressions for the forces in terms of the principal curvatures j; b

given by j ¼ x1sx2ss � x2sx1ss and b ¼ x2s
x1

; here, we just state the result:
fb ¼
1
2

DSðjþ bÞ þ ðjþ bÞðj� bÞ2

2

 !
n; fr ¼ ðrxsÞs � rbn; ð16Þ

and at the poles; we have lim
x1!0

fb ¼ jssn; lim
x1!0

fr ¼ rsxs � 2rjn: ð17Þ
Next, we derive the axisymmetric form of the single layer potential. Without loss of generality, we assume that the targets on
the surface are located at the cross-section v ¼ 0. Then, the target and source points have the form x ¼ ½x1; 0; x2�T and
yðu;vÞ ¼ ½y1 cos v; y1 sin v ; y2�

T , respectively (for notational clarity, we drop the explicit dependence of xi and yi; i ¼ 1;2,
on u). The single layer potential can be written as
S½f� ¼
F1

0
F2

264
375 ¼ Z 2p

0
dv
Z p

0
du

1
jrj Iþ

r� r

jrj3

 ! f1 cos v
f1 sin v

f2

264
375y1jyuj;

where r ¼
y1 cos v � x1

y1 sin v
y2 � x2

264
375; jrj ¼ x2

1 þ y2
1 � 2x1y1 cos v þ ðx2 � y2Þ

2
h i1=2

:

After further simplification, we get
S½f� ¼
F1

F2

� �
¼
Z 2p

0
dv
Z p

0
du

cos v
jrj þ

ðy1 cos v�x1Þðy1�x1 cos vÞ
jrj3

ðy1 cos v�x1Þðy2�x2Þ
jrj3

ðy1�x1 cos vÞðy2�x2Þj
jrj3

1
jrj þ

ðy2�x2Þ2

jrj3

24 35 f1

f2

� �
y1jyuj: ð18Þ
All the integrals with respect to ‘v’ are computed analytically using Eqs. (56)–(60). In summary, the axisymmetric form of
the 3D Stokes operator is given by
S½f�ðxÞ ¼
Z p

0
Kðx; uÞfðuÞy1ðuÞjyujdu: ð19Þ
The kernel K is composed of elliptic integrals of first and second kind.

2.1.1. Gravitational force
If there is a density difference across the membrane of a vesicle, then the vesicle experiences an additional force due to

gravity given by
fg ¼ ðqin � qoutÞðg � xÞn: ð20Þ
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Then, the governing equations that include gravitational forces are
1 In t
_x ¼ v1 þ S½fb þ fr þ fg �; divcðS½fr�Þ ¼ � divcðv1 þ S½fb þ fg �Þ: ð21Þ
2.1.2. Scaling
Following [10], we set the length and time scales as R0 ¼

ffiffiffiffi
A

4p

q
and s ¼ lR3

0
jB

, respectively, where A is the surface area of the
vesicle. In the absence of external flows and gravity, it is known that the vesicle dynamics are characterized by a single
parameter [10], the reduced volume m ¼ 6

ffiffiffi
p
p

V
A3=2 .

Since we are dealing with an axisymmetric problem, we must consider an axisymmetric v1, for example a velocity field
with parabolic profile that smoothly decays to zero away from the axis of symmetry, to resemble the profile of a Poiseuille
flow. Typically, we consider velocity profiles of the form v1 ¼ cðw2 � x2

1ðuÞÞ, where c and w are constants. Notice that the
curvature of this velocity profile is @2v1

@x2
1
¼ �2c and the corresponding shear rate is @v1

@x1
¼ �2cx1ðuÞ. We introduce the nondi-

mensional entity ĉ ¼ clR4
0

jB
that parametrizes such external flows.

In the presence of gravity, an additional parameter that governs the vesicle dynamics is the nondimensional gravity
parameter, given by ĝ ¼ ðq

in�qoutÞgR4
0

jB
.

2.1.3. Multiple vesicles
The governing equations for the jth-vesicle, in a suspension of Nv vesicles, are given by
_xj ¼ v1ðxjÞ þ Sj½fb þ fr�ðxjÞ þ
XNv

k¼1
k–j

Sk½fb þ fr�ðxjÞ; ð22Þ

divcjðSj½fr�Þ ¼ �divcj v1ðxjÞ þ Sj½fb�ðxjÞ þ
XNv

k¼1
k–j

Sk½fb þ fr�ðxjÞ

0BB@
1CCA: ð23Þ
where we separate the terms accounting for the interactions with other vesicles.
To summarize, (22) and (23) give the update and the incompressibility constraint, the forces fb and fr are given by (16)

and (17) and the single layer is given by (18). These equations form a closed system of equations for the positions and
tensions.

3. Spatial discretization scheme

We have chosen the spatial discretization scheme to enable efficient and high-order computation of derivatives for com-
puting bending and tension forces fb and fr and accurate computation of integrals (18) involving singular kernels. We use
the trigonometric polynomial bases to represent the position of the interface and functions defined on it. The coordinate
functions x1 and x2 are given by the coefficients x̂1ðkÞ and x̂2ðkÞ:1
x1ðuÞ ¼
XM

k¼1

x̂1ðkÞ sinðkuÞ; x2ðuÞ ¼
XM

k¼0

x̂2ðkÞ cosðkuÞ; u 2 ½0;p�: ð24Þ
(Recall that for smoothness x1ðuÞ is required to be odd and x2ðuÞ even). Similarly, rðuÞ ¼
PM

k¼0r̂ðkÞ cosðkuÞ. The spatial to
spectral transform and vice-versa are computed efficiently using the forward and inverse fast sine- and cosine-transforms.
This representation allows for an efficient derivative computation:
x1uðuÞ ¼
XM

k¼1

kx̂1ðkÞ cosðkuÞ; x2uðuÞ ¼ �
XM

k¼1

kx̂2ðkÞ sinðkuÞ: ð25Þ
Assuming that the shape of the vesicle is smooth, this derivative approximation is spectrally accurate. We make a few more
remarks on the derivative accuracy and the effects of round-off error in the Appendix D.

3.1. Quadrature scheme

The kernels in (19) have a logarithmic singularity, which can be verified by examining their asymptotic expansions. Let
z 2 ð0;1Þ, then we have the following expansions around z ¼ 0,

EllipticKð1� zÞ ¼ c0 � 1
2 ln zþ c1 � 1

4 ln z
� �

zþ c2 � 5
32 ln z

� �
z2 þOðz3Þ (first kind),

EllipticEð1� zÞ ¼ d0 þ d1 � 1
2 ln z

� �
zþ d2 � 1

8 ln z
� �

z2 þOðz3Þ (second kind),
he case of torus, we use Fourier basis, xðuÞ ¼
PM=2�1

k¼�M=2x̂ðkÞe�iku:
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for some constants ck and dk; k P 0. To resolve the logarithmic singularity, we use the high-order Gauss-trapezoidal rules of
[1] that compute integrals of the form

R 1
0 /ðzÞ ln zþ wðzÞdz, where /ðzÞ and wðzÞ are smooth functions. To compute (19), we

split the interval of integration into two parts: ð0;u0Þ and ðu0;pÞ, where u0 is the evaluation point on the boundary, that is,
yðu0Þ ¼ x. In each interval, we use the Gauss-trapezoidal rule to handle the singularity at u ¼ u0. To compute the integrand
at the Gauss points, we use Fourier interpolation.

3.1.1. Special quadrature for the poles
Substituting x1 ¼ 0 in (18), we get
S½f� ¼
F1

F2

� �
¼
Z 2p

0

Z p

0

cos v
jrj þ

y1 cos v
jrj3

ðy1 cos vÞðy2�x2Þ
jrj3

y1ðy2�x2Þ
jrj3

1
jrj þ

ðy2�x2Þ2

jrj3

24 35 f1

f2

� �
y1jyujdudv ð26Þ
where jrj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2

1 þ ðy2 � x2Þ2
q

. Performing analytic integration in the ‘v’ direction, we get the following expressions for F1

and F2:
F1 ¼ 0; F2 ¼ 2p
Z p

0

y2
1ðy2 � x2Þ
jrj3

f1jyuj þ
y1

jrj þ
y1ðy2 � x2Þ2

jrj3

 !
f2jyujdu: ð27Þ
Notice that the kernel is non-singular and hence the quadrature rule is modified accordingly.
Trigonometric discretization of the surface and the high-order quadrature scheme allow us, for a given smooth surface

position, to compute the velocities of surface points with spectral accuracy.
4. Time-stepping scheme

As a starting point, we consider the explicit scheme that has been used by several authors [10,21,4] for vesicle simula-
tions. While it has a low cost per time step, we demonstrate that this scheme suffers from severe stability constraints on
the time-step size. The maximal stable step size for this scheme is often substantially smaller than the step size needed
to resolve the physics of the vesicle motion.

Our second time-stepping scheme is an extension of the semi-implicit scheme that we introduced in [25]. We have shown
that in the two-dimensional case, the numerical stiffness can be circumvented by regarding the stiffest terms of the right-
hand side of the equations as linear spatially-variant operators acting on the surface point positions and tensions, e.g. QðxÞx.
Then, QðxÞ is treated explicitly and x implicitly. Such methods are usually referred to as semi-implicit or implicit-explicit
methods [2]. Apart from improving the numerical stability, these methods have the advantage that they lead to linear alge-
braic equations at every time-step. Finally, we discuss a third, fully implicit scheme in which the nonlinear equations are
solved for each time step using an inexact Newton method.

The nonlinearity of the underlying system of equations renders their analysis quite difficult and we rely on numerical
experiments to analyze the behavior of our schemes. Overall, we have observed that (i) the semi-implicit scheme performs
very well for spherical vesicles, eliminating the numerical stiffness and delivering orders-of-magnitude computational sav-
ings compared to the explicit scheme; and (ii) for toroidal vesicles, the semi-implicit may be inadequate and an implicit
scheme is required.

4.1. Explicit scheme

Let us introduce a linear operator L defined by Lr ¼ divcðS½fr�Þ. Then, given the current position of the membrane, we
first compute the tension by inverting L and then update the position explicitly. More precisely, let Dt be a fixed time-step
size and let the position at nDt, denoted by xn, be known. Then, the following steps are performed to compute xnþ1:

1. Compute the bending force fn
b

2. Compute rn ¼ �divcðS½fn
b �Þ, with all the operators defined on xn

3. Solve Lrn ¼ rn

4. Compute the tension force fn
r

5. Update the positions xnþ1 ¼ xn þ DtS½fn
b þ fn

r�

Computationally, the most expensive part of this scheme is computing rn by inverting L (Step 3). This step does not scale
well with the number of unknowns because the condition number of L grows linearly with the number of spatial discret-
ization points M, see Fig. 1. Hence, when a Krylov iterative scheme is used to solve for rn, the number of iterations grow
proportionally to the number of spatial discretization points. For instance, using the GMRES method [18] to invert L would
require O

ffiffiffiffiffi
M
p	 


iterations.
We now describe a preconditioner that eliminates this ill-conditioning. In [25] we showed that, on the unit circle, the

Fourier transform diagonalizes the operator L. We derived the spectrum Kc of L analytically and used its inverse as a pre-



Fig. 2. Plot of the eigenvalue magnitudes of the operator L defined on vesicle shapes with same surface area. For comparison, we also show the spectrum
Kc of the corresponding operator defined on the unit circle.

Fig. 1. In this table, we report the condition number of the operator L, which we have computed numerically as a function of the spatial discretization size
ðMÞ for the vesicle geometry depicted to the left.
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conditioner for solving the inextensibility constraint on a general boundary. Specifically, we proposed a preconditioner P gi-
ven by (Eq. (22) of [25]):
2 The
P ¼ F�1K�1
c F ; Kc ¼ diag k�M

2
; k�M

2þ1; . . . ; kM
2�1

n o
; ð28Þ
where F is the Fourier transform operator and kk is the kth-eigenvalue of L defined on unit circle and given by2 kk ¼ � jkj8 .
In Fig. 2, we plot the spectrum of the operator L, which we computed numerically for different boundary config-

urations. We observe that the spectra follow a pattern similar to Kc . This motivated the use of P as a preconditioner
for the 3D axisymmetric case as well. In order to do that, we first need to extend the parametric domain of the con-
straint equation from u ¼ ½0;p� to the parametric domain of the unit circle defined in v ¼ 0 plane, which is u ¼ ½0;2p�.
Recalling that scalar functions are even in u, the extension is simply Lrj2p�u ¼ Lrju and rð2p� uÞ ¼ rðuÞ, where r is the
right-hand side of the constraint equation. Now the preconditioner is applied to solve Lr ¼ r for r at discrete equi-
distant points in ½0;2p� and then, only the values at the points within ½0;p� are retained. In our numerical experiments,
we have found that this preconditioner works very well for solving the constraint equation on general axisymmetric
geometries.

By incorporating spectral representations, high-order quadrature rules, fast spatial transforms and the preconditioner, we
have minimized the computational cost per time-step of the explicit scheme. However, the fundamental drawback of the
explicit scheme is the severe constraint on the time-step size, arising due to the high-order spatial derivatives in the
right-hand side of the evolution equation in (1), which still persists. We address this important issue in the next two
schemes.

4.2. Semi-Implicit scheme

In semi-implicit schemes, the linear part of the stiffest terms is treated implicitly [2]. Such schemes have been demon-
strated to be efficient in many problems of interest in computational physics (e.g. [11,22]). In [25], we proposed two
semi-implicit schemes for simulating the 2D vesicle dynamics and showed, using numerical experiments, that they dramat-
re is a factor of two difference from the expression in [25] because of the difference in constants multiplying the corresponding Green’s functions.



Table 1
Minimum eigenvalues of QðxÞ defined on the vesicle geometry shown in Fig. 1 for different spatial discretizations. We computed these values numerically.

M 17 33 65 129 257
kmin �1.74e+03 �2.25e+04 �2.34e+05 �2.09e+06 �1.74e+07
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ically improve the stable time-step sizes over the explicit scheme. The scheme that follows is an extension of those schemes
to the axisymmetric case.

The main challenge is to simplify the nonlinear expressions for the forces and to identify an appropriate linearization that
is both easy to compute and results in a stable scheme. First, we rewrite the bending force in a different form to facilitate the
identification of the stiffest terms. In [25], we argued that, because of the inextensibility constraint, forces of certain form
(specifically, aligned with virtual forces corresponding to the constraint) can be added or subtracted from the bending force
without altering the dynamics (Appendix A of [25]). This was used to derive a simpler form for the bending force. In the axi-
symmetric case, similarly, forces in the form ðhxsÞs � hbn, for some smooth scalar field hðsÞ, can be added to fb, as for any

vesicle deformation satisfying the inextensibility constraint, these forces do not do any work. By substituting hðsÞ ¼ ðj�bÞ2
4

and modifying fb, we get the following form for the bending force,
3 Aga
fbðxÞ ¼
1
2

DSðjþ bÞnþ 1
2
ðj� bÞðj� bÞsxs; lim

x1!0
fb ¼ jssn: ð29Þ
Again, we would like to emphasize that, as in the 2D case, we use a modified version of the bending force to simplify the
implementation. The force in (29) is composed of a normal and a tangential component. Now, we can easily select the terms
with highest order spatial derivatives for implicit treatment. While counting the order of derivatives applied to the coordi-
nate functions in each term, one should be cautious of its behavior at the poles. For instance, although b ¼ x2s

x1
may seem to

have only a single derivative with respect to s, at the poles we have limx1!0bðuÞ ¼ jðuÞ and thus, it has second-order deriv-
atives. Therefore, the two terms in the normal component, DSj and DSb, have fourth-order derivatives in ‘u’ and hence are
candidates for implicit treatment. Similarly, in the tangential component, the term ðj� bÞs has the highest (third) order spa-
tial derivatives. Following these observations, we are now ready to propose the semi-implicit scheme. We assume that the
position of the spatial points fxnðukÞgM

k¼1 at time nDt is known. The goal is to obtain the corresponding positions and tensions,
fxnþ1ðukÞ;rnþ1ðukÞgM

k¼1, at ðnþ 1ÞDt. For the simplest (first-order accurate) time discretization, our semi-implicit scheme is
1
Dt
ðxnþ1 � xnÞ ¼ S fnþ1

b þ fnþ1
r

h i
ðxnÞ; ð30Þ

LðxnÞrnþ1 ¼ �divcnS fnþ1
b

h i
ðxnÞ; ð31Þ
where S½f�ðxnÞ ¼ 2p
R p

0 Gðxnðu0Þ;xnðuÞÞxn
1jxn

ujdu for any force field f. In the following definition of forces, for notational sim-
plicity, we drop the subscript on the terms that are treated explicitly. For example, we substitute jn by j and so on.
fnþ1
b ¼ 1

2
DSðjnþ1 þ bnþ1Þnþ 1

2
ðj� bÞðjnþ1 � bnþ1Þsxs bending force;

fnþ1
r ¼ ðrnþ1xsÞs � rnþ1bn tension force;

jnþ1 ¼ x1s
1
jxuj

xnþ1
2u

jxuj

� �
u

� x2s
1
jxuj

xnþ1
1u

jxuj

� �
u

; bnþ1 ¼ 1
x1

xnþ1
2u

jxuj

� �
curvatures;

lim
x1!0

bnþ1 ¼ 1
x1u

xnþ1
2u

jxuj

� �
u

lim
x1!0

DSðjnþ1 þ bnþ1Þ ¼ 2ðjnþ1 þ bnþ1Þss pole conditions:
Substituting these expressions in (30) and (31), we get a coupled linear system of equations for xnþ1 and rnþ1. However, these
equations are ill-conditioned and hence are computationally expensive to solve. Next, we discuss preconditioning tech-
niques that can be used to accelerate the linear solves.

Combining (30) and (31), we can write the semi-implicit scheme more compactly as follows
1
Dt
ðxnþ1 � xnÞ ¼ QðxnÞxnþ1; ð32Þ
where the operator QðxÞ includes all explicit terms from the bending and the inextensibility constraint equations. Because of
the bending force term, QðxÞ is highly ill-conditioned operator. In Table 1, we list the minimum eigenvalue of Q for a specific
boundary configuration. Asymptotically, it grows as Oð�M3Þ. Therefore, the condition number of the matrix ðI � DtQÞ grows
as OðM3Þ and as a result, the number of GMRES iterations required to solve ðI � DtQÞxnþ1 ¼ xn grow as OðM3=2Þ. To avoid this
increase in the number of iterations, we design a preconditioner. While computing the inverse of ðI � DtQÞ is difficult even
for simpler geometries, it turns out that mesh-independent behavior can be achieved using a preconditioner based on the
analytic spectrum Kc [25] of the two-dimensional bending operator for a unit circle (similar to the preconditioner for the
constraint equation). The preconditioner Pt , for (30) is defined as 3
in, note that, in order to use Pt , we first need to extend the parametric domain from ½0;p� to ½0;2p�.
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Pt ¼
F�1ð1� DtKcÞ�1

F 0

0 F�1ð1� DtKcÞ�1
F

" #
; ð33Þ

where Kc ¼ diag k�M
2
; k�M

2þ1; . . . ; kM
2�1

n o
; kk ¼ �

jkj3

8
: ð34Þ
We use the GMRES method to solve the coupled linear set of Eqs. (30) and (31), iterating on the Schur complement of the
position unknown and at each iteration we need to invert the inextensibility operator. We use P (defined in (28)) as a pre-
conditioner for the constraint Eq. (31) and Pt as a preconditioner for the evolution Eq. (30). The total cost per time-step of this
scheme exceeds that of an explicit scheme by a factor that is equal to the number of iterations required to solve (30).
Through numerical experiments, we observed that this number is nearly mesh-independent. This preconditioner is applica-
ble on spherical vesicles only. We have not derived preconditioners for the case of toroidal vesicles.

The background velocity and the gravitational force are treated explicitly. In the case of multiple vesicles, the interaction
forces are also treated explicitly.

Versions of this scheme with higher order in time are readily obtained using backward difference formula [2] as in the 2D
case [25]. In the case of spherical vesicles, this scheme overcomes the stiffness and allows for stable time-step sizes that are
orders of magnitude higher than those allowed by the explicit scheme (see Section 5). Therefore, the semi-implicit scheme
yields significant cost savings by not having to take too many unnecessary time-steps. In the case of toroidal vesicles, we
observed that, in practice, the semi-implicit scheme still has a stability constraint. Next, we present a time-scheme that
has higher computational cost per time-step but performs well in the case of toroidal vesicles.

4.3. Inexact Newton scheme

Following Eq. (32), we define the Jacobian ðJÞ and residual ðRÞ as follows:
JðxÞ ¼ 1� Dt QðxÞ; RnðxÞ ¼ JðxÞx� xn: ð35Þ
In the semi-implicit scheme, we solved the linear algebraic equation JðxnÞxnþ1 ¼ xn to update the positions. On the other
hand, in a fully implicit scheme, we solve the nonlinear equation Jðxnþ1Þxnþ1 ¼ xn, typically, by using one of the many vari-
ants of Newton scheme. This is computationally expensive but can, in principle, lead to a more stable method.

In an inexact Newton scheme, instead of solving the nonlinear equation, the Jacobian is replaced by an approximation and
a search direction that minimizes the residual is found at each Newton iteration:

1. Set eJ ¼ JðxnÞ compute inexact Jacobian
2. x0 ¼ eJ�1xn initial guess
3. k ¼ 0
4. while minkkRn½xk � keJ�1RnðxkÞ�k > �kRnðxkÞk & k < MaxIts check for residual convergence
5. p ¼ �eJ�1RnðxkÞ determine descent direction
6. km ¼minkkRnðxk þ kpÞk line search
7. xkþ1 ¼ xk þ kmp
8. k ¼ kþ 1
9. end while

10. xnþ1 ¼ xk update positions

Here, � is the desired tolerance on the residual and MaxIts are the maximum number of Newton iterations per time-step.
For more details on inexact Newton methods, see [14].
5. Results

In this section, we present numerical experiments to demonstrate the stability and convergence of our numerical scheme.

Example 1. First, we verify the accuracy of our spatial discretization scheme. Consider a vesicle’s surface defined by
xðu;vÞ ¼
x1ðuÞ cos v
x1ðuÞ sin v

x2ðuÞ

264
375; x1ðuÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 uþ 9 sin2 u

p
þ cos2 4u

	 

sin u

x2ðuÞ ¼ � 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 uþ 9 sin2 u

p
þ cos2 4u

	 

cos u

; u 2 ½0;p�; v 2 ½0;2p�: ð36Þ
In Fig. 3, we report the errors in computing the two principal curvatures on this surface. Since we use spectral differentiation,
the errors decay rapidly. In Table 2, we report the errors in computing the single layer potential using a fourth-order quad-
rature scheme described in Section 3.

Example 2. In the second example, we consider the motion of a vesicle suspended in a external parabolic flow, shown in
Fig. 4. The surface parameters of the initial vesicle shape are given by



Fig. 3. Relative errors in computing the principal curvatures j and b numerically of the shape shown. Specifically, we compute the curvatures at the
discrete points uk ¼ pk

M�1

� �M

k¼1 and report the errors maxk jjðukÞ�j�ðuk Þj
maxk jjðuk Þj

(similarly errors in b) for different discretization sizes. The reference values (j� and b�) are
computed analytically. As expected, we observe spectral convergence.

Table 2
Relative errors in computing S½n�, defined on the boundary shown in Fig. 3, for different spatial discretization sizes ðMÞ. The singular integrals are computed
analytically in the v-direction and a fourth-order quadrature rule is used to compute the resulting integrals in the u-direction. Reference values are computed
numerically by a finer discretization ðM ¼ 513Þ.

M 9 17 33 65 129 257
Quadrature error 2.21e�02 1.50e�04 1.10e�05 8.50e�07 5.26e�08 2.99e-09

Fig. 4. (a) Snapshots of an oblate vesicle suspended in an external parabolic flow with v1 ¼ 0;0; c 1� x2
1

4R2
0

	 
	 

, where c is a constant and (b) cross-sectional

plot of streamlines at the end of the simulation. The vesicle reaches an equilibrium parachute-like shape and translates with a constant velocity. For this
simulation, we report the stability of our numerical scheme in Table 3, accuracy in Table 5 and the performance of the preconditioner in Table 6.

Table 3
Stable (
the non
the sem
shear ra

M

17
33
65

129
257
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x1ðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 uþ 9 sin2 u

q� �
sin u; x2ðuÞ ¼ �

1
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 uþ 9 sin2 u

q� �
cos u: ð37Þ
For any non-zero shear rate, the vesicle undergoes large deformations to reach an equilibrium parachute-like shape and then
translates with a constant velocity. Although the vesicle is suspended in an unbounded flow, the resultant equilibrium shape
is similar to the ones obtained through numerical experiments in [24] for capillary flows.

We study the stability and convergence properties of various schemes based on this simulation. In Table 3, we list the
maximum allowable time-step size Dtmax for the explicit and the semi-implicit schemes. We determine Dtmax by starting
nondimensional) time-step sizes for first-order explicit and semi-implicit schemes for a vesicle whose initial configuration is shown in Fig. 4. Here, ĉ is
dimensional curvature of the external parabolic flow profile. While the explicit scheme suffers from a severe stability restriction on the time-step size,
i-implicit scheme is devoid of such restrictions. However, the semi-implicit scheme requires that the time-step size is inversely proportional to the
te.

Explicit scheme Semi-implicit scheme

ĉ ¼ 0 200 0 200

2.75e�03 5.48e�05 2.50e�01 4.88e�04
3.44e�04 6.85e�06 2.50e�01 4.88e�04
2.15e�05 4.28e�07 2.50e�01 4.88e�04
2.69e�06 5.35e�08 2.50e�01 4.88e�04
3.36e�07 6.69e�09 2.50e�01 4.88e�04
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from an arbitrarily large time-step and checking if the numerical simulation is stable. If not, we reduce the step size by half
and repeat the experiment until we get a stable simulation (this explains the repeated numbers in Table 3). We can infer
from the table that the explicit scheme requires Dtmax to be inversely proportional to the cube of M (approximately). On the
other hand, Dtmax is independent of M for the semi-implicit scheme.

Notice, however, that Dtmax, in the case of the semi-implicit scheme, is inversely proportional to the shear rate. The
inexact Newton scheme, described in Section 4.3, has similar behavior (see Table 4). When we tried to use a larger time step,
the nonlinear iterations did not converge.

In all our numerical experiments with vesicles of spherical topology, we observed that the semi-implicit scheme performs
as good as the inexact Newton scheme. Since, relatively, the computational cost per time-step of the semi-implicit scheme is
much lower, it is the method of choice for spherical topology.

Since the interior of the vesicle is filled with an incompressible fluid, the enclosed volume is preserved. As the surface is
locally inextensible, the total surface area must also be preserved. In Table 5, we report the relative errors in preserving the
total volume and surface area of the vesicle shown in Fig. 4.

Next, for the same simulation, we study the performance of the preconditioner for inverting the inextensibility constraint.
In Table 6, we list the average number of iterations required for solution using GMRES. The preconditioner reduces the
number of iterations from Oð

ffiffiffiffiffi
M
p
Þ to nearly Oð1Þ. Finally, in Table 7, we report the performance of the preconditioner for the

evolution equation.
Table 4
Stable time-step sizes in the case of the inexact Newton scheme for the simulation in Fig. 4.

M ĉ ¼ 2 20 200

33 1.56e�02 3.90e�03 4.88e�04
129 1.56e�02 3.90e�03 4.88e�04

Table 5
Surface area and the enclosed volume must be preserved in a vesicle simulation. In this Table, we report the relative errors in the area ðAÞ and volume ðVÞ
conservation for the simulation shown in Fig. 4. Here, Af and Vf are the area and volume, respectively, measured at the end of the simulation, q is the
convergence order of the semi-implicit scheme, M is the number of spatial discretization points and Dt ¼ 1

M.

M jAf�Aj
A

jVf�V j
V

q ¼ 1 q ¼ 3 q ¼ 1 q ¼ 3

17 1.34e�03 6.31e�04 4.50e�04 4.42e�04
33 8.93e�04 1.55e�04 6.10e�05 1.81e�05
65 4.89e�04 3.88e�05 6.65e�06 7.87e�07

129 2.54e�04 9.28e�06 3.66e�06 6.07e�08

Table 6
Performance of the preconditioner to solve the inextensibility constraint. Here, we report the number of GMRES iterations required to solve the discrete
inextensibility constraint equation within a relative tolerance of �. Without a preconditioner, this number increases approximately proportional to

ffiffiffiffiffi
M
p

. This is
because the condition number of L increases linearly with M. On the other hand, the preconditioner P yields nearly mesh-independent convergence.

Preconditioner None P

M � ¼ 10�6 � ¼ 10�12 � ¼ 10�6 � ¼ 10�12

17 9 10 8 10
33 16 19 9 17
65 26 36 8 17

129 40 58 8 18
257 58 86 8 18
513 84 127 8 19

Table 7
Number of GMRES iterations to solve the discrete evolution Eq. (32) for two cases: (i) without using any preconditioner and (ii) using the preconditioner Pt

defined in (33). Notice that, asymptotically, they grow superlinearly for the former case and are nearly constant for the later case. These values are for the
simulation shown in Fig. 4. The GMRES tolerance, in this example, is set to 10�6.

M 17 33 65 129 257 513

None 5 12 30 72 174 423
Pt 6 11 13 15 15 15



Example 3. We consider a vesicle with oscillatory initial shape, defined in Eq. (36) and simulate its motion to equilibrium in
the absence of an external flow. We show snapshots in Fig. 5. The advantage of the semi-implicit scheme is clear in this
example: we can simulate the dynamics with a drastically smaller number of time-steps in comparison to an explicit
method.

The flow field around the vesicle can be computed by the following expression
Fig. 5.
energy.
experim
hundre
vðxÞ ¼
Z

c
Gðx;x0Þ½fbðx0Þ þ frðx0Þ�dcðx0Þ; x 2 R3: ð38Þ
We plot the streamlines corresponding to this simulation in Fig. 6.
Snapshots of a freely suspended vesicle, with complicated initial shape, relaxing to equilibrium. Here, e ¼ pjB
4

R p
0 ðjþ bÞ2x1jjxujjdu, the bending

We require M ¼ 128 to resolve the initial shape to double precision ð� ¼ 10�12Þ. The advantage of the semi-implicit scheme is conspicuous from this
ent: while a fully explicit demands more than a million time-steps to simulate the dynamics, the semi-implicit scheme requires fewer than

d time-steps.
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Example 4. We consider a toroidal vesicle suspended freely in a viscous fluid. The surface parameters are given by
Fig. 7.
factor 9
report t

Fig. 8.
of the p
x1ðuÞ ¼ ð1þ 0:03 cos 5uÞ cos u; x2ðuÞ ¼ ð1þ 0:03 cos 5uÞ sin u: ð39Þ
In Fig. 7, we show the snapshots of the vesicle relaxing to an equilibrium Willmore torus. We also list the maximum time-
step sizes for different discretizations allowed by the inexact Newton and the semi-implicit schemes. As mentioned before,
the fully implicit scheme outperforms the semi-implicit scheme for toroidal geometries.

Simulations in the presence of gravity. Presence of gravitational field alters the dynamics in many interesting ways. We
observed that, in the absence of external flow, if the parameter ĝ is low, a vesicle reaches an equilibrium shape and
translates with a constant velocity. These equilibrium shapes are the same as the ones obtained in quiescent fluid
suspension.

On the other hand, when ĝ is high, the vesicle deforms either to a gourd shape or a stomatocyte-like shape corresponding
to prolate and oblate initial shapes, respectively. We show two such simulations in Fig. 8. The behavior of vesicles in the
gravity field will be considered in greater detail in a separate article.
Toroidal star-shaped vesicle relaxing to a Willmore torus. The difference between the surface at each step and the Willmore torus is magnified by a
. In this case, we have observed that the inexact Newton scheme (I.N.) has better stability properties than the semi-implicit scheme (S.I.). Here, we
he stable time-step sizes, for both the schemes, as a function of the number of spatial discretization points.

Fig. 9. Snapshots of interacting vesicles suspended in an external parabolic flow.

Snapshots of a deforming prolate and an oblate vesicle suspended in a viscous fluid in the presence of gravity. In this example, the reduced volumes
rolate of the oblate vesicles are 0.78 and 0.65, respectively; ĝ ¼ 100.
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Finally, we show a multiple vesicle simulation in Fig. 9. The semi-implicit scheme, with the explicit treatment of the
interaction forces, has been used for this simulation.
6. Conclusions and future work

We have presented a numerical scheme for simulating the motion of axisymmetric vesicles of spherical and toroidal
topologies in viscous fluid flows. Our numerical schemes overcome the stringent restrictions on the time-step size of an ex-
plicit scheme with modestly higher computational cost per time-step. We have also introduced a new scheme for computing
Stokes potential on an axisymmetric surface. Overall, the method achieves high-order accuracy in space and time.

We are currently working on extending these schemes to arbitrary shaped vesicles in 3D. This requires many additional
components like accurate surface representations, preconditioners and high-order accurate calculation of derivatives.
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Appendix A. Equilibrium shapes from constrained minimization

Alternative to fluid-formulation, we can obtain the equilibrium shapes by minimizing the bending energy subject to con-
straints on the global surface area and volume. Introducing Lagrange multipliers r and p, which correspond to the constraints
on area and volume, we can write the Lagrangian as
L ¼ 1
2

Z
c

H2dcþ r
Z

c
dc� A

� �
þ p

Z
X

dX� V
� �

: ð40Þ
By taking variations, we obtain the forces due to bending and the constraints. To find the equilibrium shape, we can use a
steepest descent-like algorithm in which the pseudo-velocity of the boundary is given by
@x
@t
¼ ðvj � rðjþ bÞ þ pÞn; ð41Þ

where vj ¼
1
2

DSðjþ bÞ þ ðjþ bÞðj� bÞ2

2

 !
:

The unknowns r and p, which are functions of time alone, are computed by requiring that the rate of change of the area and
volume of the vesicle must vanish.
_A ¼ 2p
Z p

0
_x1jxuj þ

x1

jxuj
ðx1u _x1u þ x2u _x2uÞdu ð42Þ

¼ 2p
Z p

0

v1

x1
þ xs � vs

� �
x1jxujdu ¼ 0: ð43Þ
This expression can also be obtained by integrating the surface divergence of the velocity field, that is, _A ¼
R
c divcðvÞdc. If vn

is the component of the velocity normal to the surface, then the rate of change of volume is given by
_V ¼ 2p
Z p

0
vnx1jxujdu ¼ 0: ð44Þ
Substituting the velocity (41) in (43) and (44) and solving for the unknowns r and p, we get the following
r ¼ hvjihjþ bi � Ahðjþ bÞvji
hjþ bi2 � Ahðjþ bÞ2i

; p ¼ rhjþ bi � hvji
A

; where hf i :¼
Z

c
f dc: ð45Þ
We can compute the equilibrium shapes by starting from an arbitrary shape, updating the shape using a time-marching
scheme on (41) until the surface velocity vanishes. At every time-step, the spatial constants r and p are computed using
(45). We computed the equilibrium shapes using this approach and compared with those obtained by solving (1) and as ex-
pected, they match very well.
Appendix B. Interfacial forces

Here, we give more details on the derivation of the expressions for bending and tension forces in the axisymmetric case.
Starting from the special form the positions take in the axisymmetric case (15), we can reduce the fundamental form coef-
ficients to single variable as follows
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E ¼ xu � xu ¼ jxuj2; F ¼ xu � xv ¼ 0; G ¼ xv � xv ¼ x2
1:

W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EG� F2

p
¼ x1jxuj; n ¼ ðxu � xvÞ=W ¼ 1

jxuj

�x2u cos v
�x2u sin v

x1u

264
375

L ¼ xuu � n ¼
x1ux2uu � x2ux1uu

jxuj
; M ¼ xuv � n ¼ 0; N ¼ xvv � n ¼

x1x2u

jxuj

ð46Þ
Let j be the cross-section curvature and s be the arc-length parameter. We have su ¼ jxuj and j ¼ x1sx2ss � x2sx1ss. Let b ¼ x2s
x1

,
then the curvatures can be compactly written as
K ¼ LN �W2

W2 ¼ jb; H ¼ 1
2

EN � 2FM þ GL

W2 ¼ 1
2
ðjþ bÞ: ð47Þ
i.e., j and b are the principal curvatures. Substituting the expressions for the Gauss and mean curvatures in (12), we get the
axisymmetric form of the bending force
fb ¼
1
2

DSðjþ bÞ þ ðjþ bÞðj� bÞ2

2

 !
n: ð48Þ
The Laplace-Beltrami operator, defined in (11) can be simplified to the following form
DS/ ¼
1
W

G/u

W

� �
u

¼ 1
x1
ðx1/sÞs ð49Þ
Finally, the tension forces become
fr ¼ rsrþ rDSx ¼ G

W2 ruxu � 2Hrn ð50Þ

¼ rsxs � rðjþ bÞn ¼ ðrxsÞs � rbn ð51Þ
Pole conditions. Using the fact that scalar functions in u are even functions and x1ðuÞ is an odd function, we can compute the
limits by Taylor’s expansion around zero. As x1 ! 0, we have
bðuÞ ! jðuÞ; DS/! 2/ss ð52Þ
and hence fb ! 2jssn; fr ! ðrsxs � 2rjnÞ: ð53Þ
Appendix C. Stokes kernel

The convolution with the Stokes kernel (defined in (18)) can be computed analytically in the ‘v’ direction. Here, we state
the result after introducing the following notation. Let
P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy2 � x2Þ2 þ ðy1 þ x1Þ2

q
; M ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy2 � x2Þ2 þ ðy1 � x1Þ2Þ

q
ð54Þ

and K ¼ EllipticK
2
ffiffiffiffiffiffiffiffiffiffi
y1x1
p

P

� �
; E ¼ EllipticE

2
ffiffiffiffiffiffiffiffiffiffi
y1x1
p

P

� �
: ð55Þ
Recalling that jrj ¼ x2
1 þ y2

1 � 2x1y1 cos v þ ðx2 � y2Þ
2

h i1=2
, we obtain
Z 2p

0

dv
jrj ¼

4K
P
; ð56ÞZ 2p

0

cos v dv
jrj ¼ 2

y1x1P
y2

1 þ x2
1 þ ðy2 � x2Þ2

	 

K� P2E

	 

; ð57ÞZ 2p

0

ðy1 cos v � x1Þðy1 � x1 cos vÞdv
jrj3

¼ 2ðy2 � x2Þ2

y1x1PM
2 M2K� y2

1 þ x2
1 þ ðy2 � x2Þ2

	 

E

	 

; ð58ÞZ 2p

0

ðy1 cos v � x1Þdv
jrj3

¼ 2
x1PM

2 �M2Kþ y2
1 þ ðy2 � x2Þ2 � x2

1

	 

E

	 

; ð59ÞZ 2p

0

dv
jrj3
¼ 4E

PM2 : ð60Þ
The resulting kernels in (56)–(60) are functions of single variable u. Notice that, as x! y;K and E become singular since
2
ffiffiffiffiffiffiffi
y1x1
p

P
! 1.
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Appendix D. Derivative accuracy

Theoretically, the error in computing the derivative using (25) should decay super-algebraically. However, in practice, the
overall error is also dictated by the round-off errors which grow as OðN�Þ, where � is the machine precision. For high-order
derivatives, this becomes even more prominent as the round-off error growth is OðNk�Þ in computing a derivative of order k.
We illustrate this behavior in Fig. 10, using the MATLAB code of Trefethen [23] for Fourier differentiation (http://www.com-
lab.ox.ac.uk/nick.trefethen/p7.m).

Since, inherently, the derivative is an ill-conditioned operator, this behavior is typical for most of the numerical methods,
in particular, for spectral methods [6].

While we cannot avoid the round-off errors, we can enhance the accuracy of the force computations by a technique that
we shall call full expansion. Suppose we numerically computed the functions x2s and x. Let Dh be the discrete Fourier differ-
entiation operator (for odd and even functions defined in Eq. (25)), then we define the expanded form of the scalar function
bs as follows (note that b ¼ x2s

x )
Table 8
Relative
comput
x2ðuÞ ¼
off erro

M

20
40
80

160
320
bs ¼
1
su

Dh
x2s

x1

� �
ðnon-expanded formÞ ð61Þ

¼ 1
su

ðx1suÞDhðx2uÞ � Dhðx1suÞx2u

ðx1suÞ2

" #
ðexpanded formÞ: ð62Þ
In the expanded form, a Fourier approximation of non-bandlimited functions is minimized. While the gain in accuracy is not
substantial for low-order derivatives, it could be significant in computing the bending force which involves fourth-order
derivatives. Similar to Eq. (62), a fully expanded form of the bending force is obtained by the use of the chain rule to avoid
approximating functions of the form /ðuÞ

WðuÞ, where /ðuÞ is a scalar function. We list the errors in Table 8.
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Fig. 10. Relative errors in computing f ðxÞ using Fourier differentiation operator.

errors in computing the bending force using the non-expanded and the fully expanded expressions on a perturbed sphere. The reference values are
ed analytically. Here, x is the order of the perturbation, more specifically, the surface parameters are given by x1ðuÞ ¼ ð1þ 0:1 cos xuÞ sin u and
ð1þ 0:1 cos xuÞ cos u. In both cases, the errors decay rapidly, because of the spectrally convergent scheme and then start to grow, because of the round-
rs. However, the fully expanded force computation improves the errors substantially compared to the non-expanded version.

Non-expanded Fully expanded

x ¼ 1 5 9 1 5 9

1.10e�006 8.91e�002 2.65e�001 8.31e�011 3.64e�013 3.10e+000
1.20e�010 8.16e�002 7.81e�001 1.32e�009 4.26e�012 3.55e�012
1.23e�009 4.05e�003 3.74e�002 4.38e�008 2.44e�011 1.98e�011
5.84e�008 1.40e�006 4.29e�003 1.48e�007 8.91e�011 3.14e�011
5.03e�007 1.91e�011 4.48e�005 3.42e�005 3.00e�008 1.80e�009

http://www.comlab.ox.ac.uk/nick.trefethen/p7.m
http://www.comlab.ox.ac.uk/nick.trefethen/p7.m
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